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The potentially high level of noise generated by modern counter-rotation propellers 
has attracted considerable interest and concern, and one of the most potent 
mechanisms involved is the unsteady interaction between the tip vortex shed from 
the tips of the forward blade row and the rear row. In  this paper a model problem 
is considered, in which the tip vortex is represented by a jet of constant axial 
velocity, which is convected at  right angles to itself by a uniform supersonic mean 
flow, and which is cut by a rigid airfoil with its chord aligned along the mean flow 
direction. Ffowcs Williams & Guo have previously considered this problem for an 
infinite-span airfoil and a circular jet; in this paper we extend their analysis to 
include the effects of the presence of the second-row blade tip on the interaction, by 
considering a semi-infinite-span airfoil. As a first attempt, the case of a highly 
compact jet, represented by a delta-function upwash on the airfoil, is considered, and 
both the total lift on the airfoil and the radiation are investigated. The presence of 
the airfoil corner and side edge is seen to cause the lift to decay in time from its 
infinite-span value towards zero, due to a spanwise motion round the side edge; 
whilst the radiation is shown to be composed of two signals, the first received directly 
from the interaction between the jet and the leading edge, and the second resulting 
from the diffraction of sound waves emanating from the leading edge by the side 
edge. The effect of choosing a more diffuse upwash distribution is then considered, in 
which case it becomes clear that the first signal has a considerably larger amplitude, 
and shorter duration, than the second, diffracted signal. 

1. Introduction 
The interaction between the tip vortex shed by the forward row and the counter- 

rotating rear row is a powerful mechanism of sound generation in modern propeller 
systems. An accurate calculation of this noise must involve a number of demanding 
steps, and must at least include a realistic prediction of the source structure (that is, 
of the vorticity shed by the front row), a prediction of the noise generation resulting 
from the interaction of the rear row with this vorticity, and some consideration of the 
complicated propagation of the sound through inhomogeneities in the flow and round 
the other blades. Such a computation would clearly represent a very considerable 
undertaking, and given the present limited understanding of the whole process does 
not seem possible; for instance, whilst experiments on the structure of the tip vortex 
have been reported by Vaczy & McCormick (1987) and Simonich, McCormick & 
Lavich (1989), little quantitative information is as yet available on the tip vortex 
structure. The solution of simple model problems relevant to these three processes is 
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clearly critical, therefore, both as a means of understanding the physics, and in order 
to provide some estimate of the relative importance of the various mechanisms. 

In this paper we shall only be concerned with the sound generation process, and 
shall therefore consider the unsteady interaction between what we believe is a 
reasonable, highly simplified, representation of the tip vortex and a model blade, and 
suppose that the resulting radiation propagates through uniform flow. We shall also 
be neglecting the blade rotation in determining this unsteady response, by supposing 
that the rear row blade is moving in a straight line at the appropriate local helical 
velocity, which will presumably be a reasonable assumption when calculating 
quantities evaluated in the neighbourhood of the blade surface, such as the blade 
loading, since the blade would in practice rotate by only a negligible amount during 
its very rapid interaction with the tip vortex. On the other hand, this rectilinear 
representation will clearly not provide a sensible estimate of the noise, since the 
radiation produced by sources in rectilinear motion is very different from that 
produced by rotating sources. However, an understanding of the radiation in our 
simplified rectilinear problem is still important as a first step, since it does provide 
an indication of acoustical energy levels being projected to the far field, and, as will 
be seen, provides some understanding of the various mechanisms. We shall represent 
the tip vortex core by a jet whose axial velocity is constant in time and whose 
transverse extent is relatively small, and which is cut at  right angles by the blade. 
This seems a particularly attractive model for the tip vortex, since it both proves 
amenable to analysis and contains the most significant feature of the real flow, 
namely that the tip vortex will be tightly rolled up for the high, possibly supersonic, 
tip speeds envisaged for modern propellers. 

A considerable amount of attention has been devoted to such problems concerning 
the interaction between some known disturbance and an airfoil ; for instance, Amiet 
(1976, 1986a), who considers the interaction between a harmonic gust and an 
infinite-span airfoil in uniform subsonic flow. With particular relevance to the 
question of tip-vortex noise, Ffowcs Williams & Guo (1988) and Guo (1990) 
considered the interaction of a circular uniform-axial-velocity jet with an infinite- 
span, supersonic airfoil (Amiet 19863 solved the subsonic version of this problem). In 
these jet problems, noise is generated when the leading edge of the airfoil intersects 
the jet, forcing a sudden readjustment in the near-field flow round the airfoil in order 
to satisfy the normal velocity boundary condition. This noise is particularly intense, 
and in the supersonic problem Ffowcs Williams & Guo (1988) even predicted that 
along a single ‘Mach wave’ direction in the jet rest frame these acoustic waves 
propagate to the far field unattenuated, with an amplitude of typically 160 dB or 
more. Such an effect can clearly not occur in the subsonic case, but even then an 
intense, large-amplitude signal was predicted by Amiet (19863), at least for a 
relatively compact jet. As well as the initial signal resulting from the leading-edge 
interaction, a secondary weaker and less intense signal was predicted for both 
subsonic and supersonic problems, arising from the diffraction of sound generated at 
the airfoil leading edge by the trailing edge (for the supersonic case see in particular 
Guo 1990). Consideration of these simple jet-airfoil interaction problems has 
therefore confirmed that the interaction between the tip vortex and a blade is 
capable of producing considerable, subjectively annoying, noise levels, and in this 
paper we seek to include one further feature, namely the presence of the blade tip. 
Since the blade lengths in the front and rear rows of modern propellers are likely t o  
be equal, it  is clear that the front-row tip vortex will interact with the rear-row blade 
near the blade tip, and the question of the effect of the blade tip on the noise is 
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therefore an important one, which has not been addressed by the analysis of infinite- 
span airfoils mentioned above. We also note that real propeller blades are swept, so 
that the leading edges are no longer at  right angles, but this will not be considered 
here. 

We shall restrict attention to the case of supersonic motion, and as a first step in 
the analysis we shall suppose that the rear-row blade is unswept and is rectangular 
(i.e. untapered) at the tip. Further, since the effects of the trailing edge have been 
considered in detail by Guo (1990), we shall neglect its presence here, and represent 
the blade by a rigid quarter-plane (i.e. an airfoil which is semi-infinite in two 
perpendicular directions). Supersonic flow past a quarter-plane has previously been 
studied by Stewartson (1950) and Miles (1951), who both considered the related 
problem of the unsteady lift distribution on a fluttering quarter-plane, whilst more 
recently Martinez & Widnall (1983) and Peake (1992) have considered harmonic 
guskcorner interaction in subsonic and transonic flow respectively. As has already 
been stated, however, our aim here is to study the effects of a jet-like upwash, as 
motivated by Ffowcs Williams & GUO’S approach (sideedge effects in airfoil-vortex 
interaction have already been considered by Howe 1989 in the case of a circular 
airflow in low Mach number flow). As a starting point for our analysis, and as a means 
of providing a simple description of the radiation mechanisms, we consider a highly 
compact jet, which we shall represent by a delta-function normal velocity 
distribution on the quarter-plane, as is done by Amiet (1986 b) ,  and once this has been 
completed we repeat the analysis for a more diffuse upwash, in which the jet velocity 
possesses a Gaussian distribution (again in parallel to Amiet 19863). We shall work 
in the aerodynamic frame, in which the quarter-plane is at  rest, and the jet is 
convected by the supersonic mean flow. 

The paper is divided into sections, as follows. In  $2 we describe the mathematical 
formulation, and the formal solution of the problem for the delta-function jet, which 
is completed using complex variable methods and the Wiener-Hopf technique. In $3  
we consider the total lift on the quarter-plane, and an analytic expression for the 
variation of the lift with time is found. Before the jet intersects the quarter-plane, 
the lift is of course zero, but once the interaction has occurred we shall see that there 
is a time interval in which disturbances from the leading-edge-jet interaction have 
not yet propagated to the side edge, so that the lift takes the value that it would 
have done in the infinite-span case; once acoustic waves generated by the leading- 
edge-jet interaction have reached the side edge, however, a spanwise motion around 
the side edge, from pressure surface to suction surface, is set up, which acts to reduce 
the total lift towards zero. 

In  $4 we consider the radiation in the delta-function jet case. We see that sound 
is received by observers positioned on and inside a cone with its apex at  the quarter- 
plane corner and with semi-vertical angle sin-l 1/M, and expressions for the acoustic 
pressure, valid strictly inside this cone, are derived. The radiation is seen to be 
composed of two distinct signals (which are singularities in this case, due to our 
choice of a singular upwash) ; the first signal (here a delta function), is a result of the 
jet-leading-edge interaction alone, and is exactly equal to the infinite-span result of 
Guo (1990) ; whilst the second signal (here an inverse square root singularity) results 
from the diffraction of the leading-edge sound by the side edge. We prove in an 
Appendix that the arrival time of this second signal corresponds exactly to the 
shortest time taken by acoustic waves to travel from the point of intersection of the 
jet with the leading edge to the side edge, be diffracted by the side edge, and then 
reach the observer in the far field. 
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Of course, whilst our use of a delta-function upwash has simplified the analysis, 
and indicated how the various components of the radiation are generated, such a 
singularity is physically unrealistic, and in $ 5  we therefore repeat the radiation 
calculation for a more diffuse (Gaussian) upwash distribution ; we shall, however, 
suppose that the characteristic length of this Gaussian is small. The resulting 
radiation field is just a smoothed-out, non-singular version of the delta-function 
result, and again contains two signals, generated by the interaction of the jet with 
the leading edge and the diffraction of the leading-edge sound by the side edge 
respectively. However, it is now possible to compare the relative intensities and 
durations of the two signals, and it becomes clear that the second (diffracted) signal 
has a significantly smaller amplitude and longer duration than the first signal. The 
structure of the radiation, consisting of a large impulsive pressure peak, followed by 
a second, less intense signal of the opposite sign, is in fact very similar to that found 
for the interruption of a jet by an infinite-span, but finite-chord, airfoil by Guo (1990) 
in supersonic flow and Amiet (1986b) in subsonic flow. 

As we have already mentioned, the question of the intense, unattenuated, pulse of 
radiation which is transmitted along the critical Mach-wave direction in the jet rest 
frame has already been considered by Ffowcs Williams & Guo (1988) for the infinite- 
span airfoil, and such a pulse, resulting from the initial interaction between the jet 
and the leading edge, would clearly also be present in our quarter-plane problem (we 
note that the Mach-wave direction in the jet rest frame corresponds to a single 
direction lying on the cone with apex at the corner and semi-vertical angle sinp1 l / M  
in our blade-fixed frame). This pulse would be unaffected by the presence of the 
corner, however, since no diffracted sound from the side edge could subsequently 
catch up with it, and its magnitude is probably best predicted using the (infinite-span 
airfoil) techniques described by Ffowcs Williams & Guo (1988); this single, Mach- 
wave, observer direction will therefore not be considered here. In  all other observer 
directions, we shall see that the radiation decays with observer distance due to 
spherical spreading. 

2. Mathematical formulation 
We consider a rigid quarter-plane occupying the quadrant (x > 0, y > 0) of the 

plane x = 0, surrounded by a uniform supersonic mean flow of speed U parallel to the 
x-axis; the semi-infinite leading and side edges of the quarter-plane are therefore 
aligned along the y- and x-axes respectively. Since modern propeller blades are thin, 
we shall suppose as a first approximation that the quarter-plane possesses zero 
thickness. A jet, with its axis aligned parallel to the z-axis and with its axial velocity 
constant in time, is convected by the mean flow, and is incident on the quarter-plane 
from upstream; in the first instance we suppose that the jet axial velocity 
distribution is highly compact and can be represented by a delta function, so that the 
upwash velocity on the quarter plane is of the form 

w x -  Ut) 4y-yo) z ,  (1) 
where z is the unit vector parallel to the z-axis. Here, V is the volume flux of the jet 
across the plane z = 0, and yo (which is positive) corresponds to the perpendicular 
distance between the corner and the path of the jet ; the system is shown in figure 1.  
We see that the jet intersects the leading edge of the quarter-plane at  the instant 
t = 0. The convention adopted here for the direction of the jet velocity is opposite to 
that used by Ffowcs Williams & Guo (1988) and Guo (1990). 
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t ?Convected velocity jet 

flow 

+ 
FIGURE 1. The geometry of the problem; (a )  perspective view; ( b )  plan view. 

The interaction between the jet and the rigid quarter-plane will induce a 
perturbation velocity, u, and throughout this paper we shall regard the jet as a small 
disturbance to the mean flow, so that this perturbation velocity will be irrotational, 
with u = V$. The potential $(z, y, z,  t )  then satisfies the usual linear convected wave 
equation 

where p = (M" - I);, co is the quiescent sound speed and M is the mean-flow Mach 
number (M > 1). Further, $(x, y, z, t) must satisfy the following conditions: 

(i) the total normal velocity on the quarter-plane must be zero, so that 

(ii) owing to the symmetry of the problem, $(x, y, x ,  t )  must be an odd function of z, 
and since a pressure jump across x = 0 can only be supported across the rigid quarter- 
plane, we have that $($, y, 0, t )  = 0 except on {z > 0, y > 0); 

(iii) $(x, y, z, t )  must be causal (i.e. $(x, y, x ,  t )  = 0 for t < 0) ,  and must satisfy the 
radiation condition (i.e. be composed of outgoing disturbances at infinity). 

We introduce the three-dimensional Fourier transform of $(q y, z, t ) ,  defined by 

WL k,, 2 ,  w )  = J:m rm S_mm $(x, y , z , t )  exp (ik,x+ik,y-iwt)dxdydt, (4) 

so that the Fourier transform of (2) becomes 
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with 

Equation (5)  can easily be solved, and from condition (iii) we see that 

where [@(k,,k,,O,w)]~ is the Fourier transform of the jump in $(x, y,z,t) across 
z = 0, and y(k,, k,, w )  is defined below. There must be at least two branch points 
(corresponding to the zeros of y(k,, k,, w ) ,  and possibly infinity) in each of the kl-, k,- 
and w-planes, and the branch cuts, together with the relative positions of the 
contours in the subsequent Fourier inversion, are specified as follows. 

(a) The causality condition implies that the Fourier inversion contour must pass 
below any singularities in the w-plane (so that, for t < 0, the w-contour can be closed 
in the lower half-plane to give $ = 0). Further, since the radiation condition 
stipulates that the solution must be composed of outgoing waves, it follows that 
infinity is not a branch point in the w-plane (in contrast, infinity will be a branch 
point in the k,- and k,-planes), and we therefore choose a branch cut in the w-plane 
which joins the two finite branch points together; we further fix the value of y by 
supposing that y takes positive imaginary values as w + +  00 along the real axis. 

( b )  In the kl-plane, given that the scattered potential upstream of the leading edge 
must be zero in our supersonic mean flow, both branch cuts in the k,-plane are chosen 
to join to infinity through Im k, < 0, parallel to the imaginary axis (we use the 
notation Re z and Im x to denote the real and imaginary parts of z respectively), and 
the Fourier inversion contour in the k,-plane chosen to pass above these branch 
points. We suppose that y takes negative imaginary values as k ,  --f + 00 along the real 
axis. 

( c )  In the k,-plane, the choice of branch cuts is also governed by the radiation 
condition ; for Re w > 0 we require the k, contour to lie below any singularities in the 
half-plane Re k, < 0 and above any in the half-plane Re k,  > 0, so that in this case we 
choose one cut originating from the branch point in Re k,  < 0 and joining to infinity 
through Im k ,  > 0, and another originating from the branch point in Re k,  > 0 and 
joining to infinity through Im k, < 0, with both cuts running parallel to the 
imaginary axis ; for Re w < 0 the position of the k, cuts is exactly reversed. In these 
cases the Fourier inversion contour in the k,-plane lies along the real axis, indented 
above and below the respective branch points. We note that when both k, branch 
points lie on the imaginary axis the k,  branch cuts are chosen to lie along the 
imaginary axis, and the inversion contour lies along the real axis. Finally, we suppose 
that y takes positive real values as k, + + 00 along the real axis. 

We now consider the normal velocity boundary condition. Since the mean flow is 
supersonic, we have that $(x, y, x ,  t )  vanishes identically in x < 0, so that the 
transform of (3),  having integrated over all values o f t  and positive values of x and 
y, becomes 

where the + superfix on a@/az indicates that the y-integration has been taken over 
the positive semi-infinite interval (that is, 0 < y < 00) .  Our method of solution will be 
the Wiener-Hopf technique with respect to the k, variable, and so at this stage we 
make a multiplicative factorization of y(k,, k,, w )  in the form 

Y(k1, k,, 0) = 7 + ( k  k,, w)y-&, 4, w ) ,  (9) 
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where y* (itl, k,, w )  are analytic, non-zero and possess algebraic behaviour at infinity 
in the upper and lower halves of the complex k,-planes respectively (in what follows 
we denote the upper and lower k, half-planes by R*). We find that 

y'(k,, k, ,  w )  = (k,TK)t, (10) 

where 

we take K = sgn(w) K1 when K 2  > 0 and K = -i lKl when K 2  < 0. Given this 
definition of K ,  together with our choice of branch cuts, it is easy to see that the 
factors defined in (10) have the correct analyticity properties in the respective half- 
planes. 

The usual Wiener-Hopf equation (see Noble 1958, pp. 52-58) can now be derived 
by substituting (7) into (8), to yield 

where the - superfix indicates that the y-integration has been performed over the 
negative semi-infinite y interval ( - co < y < 0) ,  so that 

a@ a@+ a@- 
ax ax aZ -=-+-, 

and where 

The next step is to make an additive factorization of E ( k l ,  k,, w )  in the form 

E(k1, k,, w )  = E+(k i ,  h2, w )  +E-(k,, k,, w ) ,  

where E*(k,, k,, w )  are analytic and possess algebraic behaviour at infinity in R' 
respectively. This can be completed by the use of a Cauchy integral representation 
of the additive factors (Noble 1958, p. 13), and we find that 

1 

erf [exp (@) $,yy-(kl, k,, @)I. 2iV exp (ik, yo) 
(k, u - w )  y-(k, ,  k,, w )  

E+(kl ,  k,, = 

Full mathematical details of this derivation are presented in Appendix A, together 
with a demonstration of the fact that the expressions given in (13) exhibit the 
required analyticity properties. We now see that 

y+(kz, k,, w )  [@(hi, k,, 0, w)l'-E+(k,, k,, w )  

the left-hand side of (14) is analytic in R+ (the fact that [@($, k,, 0, o)]f is analytic 
there follows from condition (ii)), and the right-hand side is analytic in R-, so that 
by analytic continuation (14) defines a function ( f ( k , ) ,  say) which is analytic 
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throughout the complex k,-plane. It is shown in Appendix A that E*(k, ,  k,, w )  - kil 
as k2+m E R ~  respectively, and since 

[@(k,, k,, 0, w)]? - k$ as k, +00 ER+ 

and -(kl,k,,O,w) - k i t  as lc,-+oo~R- 

(these follow from the fact that the flow must be essentially incompressible, and 
hence satisfy Laplace's equation, close to the side edge), we see thatf(k,) - lei1 at 00, 
so that from Liouville's theorem f ( k , )  = 0, yielding two equations from (14). 

We therefore have an expression for [@(k,, k,, 0, w)]?, and using the usual potential 
theory relation between pressure and velocity potential, together with the Fourier 
inversion formula, we find that the lift distribution on the plane z = 0 (denoted 
b ( x ,  y, 0, t)]?) is given by 

a@- 
a2 

(15) 
whilst the velocity potential is 

x exp (iwt - ik, x - ik, y - y(k , ,  k,, w )  121) dk, dk, dw. (16) 
The paths of the integration contours in (15) and (16) relative to the various branch 
cuts have already been chosen to satisfy the causality and radiation conditions. 

3. The unsteady lift 
It has not proved possible to derive a closed-form expression for the detailed 

unsteady lift distribution b ( x ,  y, 0, z)]?,  because of the complicated nature of the 
three-dimensional integral in (15), but we are, however, able to calculate the total 
(integrated) lift on the quarter-plane. We define the total life, L(t) ,  by 

and from (15) (together with the fact that k (x ,  y, 0, t)]? vanishes off the quarter- 
plane, so that the x- and y-integrations in (17) can be extended to - a), we rewrite 
(17) as 

By interchanging the orders of integration, the x- and y-integrals can be performed 
as 27cb'(k,) and 2n&(k,) respectively, so that on substituting for E+(k,, k,, w )  from (13) 
we find that 
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FIGURE 2. 

-2 0 2 4 6 8 10 
t 

The quantity yo takes the values 1, 3 and 5. 
Plot of the total normalized lift on the quarter-plane, -L( t ) / (p , c ,  against time, t .  

For t < 0 the integration contour in (19) is closed in the lower half-plane, yielding 
L(t) = 0. Alternatively, for t > 0 we seek to rewrite (19) in the form of a standard 
integral, and by use of the fact that erf (2) = erf (T), we have 

where J1 Im (exqSiwt) { 1 - erf [ exp (ilr/4) ():I)) do  ; 

it can be seen that J1 is well-defined, since its integrand both possesses only an 
integrable singularity at  w = 0, and approaches zero like w-i as w -too. Both terms in 
(20) can be calculated in closed form; for t > 0 we have 

whilst an expression for J1 is found in Appendix B in the form 

- ;lr if t < yo/co 

2 tan-1 [(tco/yo) - 114--971: if t > yo/co. 
J1={ 

Combining these results, we therefore see from (20) that 

where H(t )  is the Heaviside step function. The quantity L ( t )  is plotted in figure 2 for 
several values of yo, and we see that these time histories consist of three distinct 
segments. First, for t < 0 the lift is zero, since the jet has by this time not reached 
the leading edge of the quarter-plane. Second, in the interval 0 < t < yo/co the lift has 
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the constant value - 2p0 Vc0 ; the rise from zero to this constant value occurs at  t = 0 
(i.e. when the jet first intersects the quarter-plane), and is instantaneous since the 
jet is compact, possessing no lengthscale. The constant value -2p0 Vc, is exactly the 
lift experienced by a supersonic, infinite-span airfoil with infinite chord when cutting 
our delta-function jet, and we therefore see that in this time interval the presence of 
the side edge and corner has had no effect on the value of L(t). In  fact, -2p, Vc, is 
the lift that would be experienced by an infinite-span, infinite-chord airfoil cutting 
a circular jet of arbitrary radius but with the same volume flux as the delta-function 
jet (see Guo 1990). Third, for t > yo/c0 the lift decays monotonically from this 
constant value towards zero, only reaching zero after an infinite time, and it is clear 
that it is only in this time interval that the side edge and corner have any effect on 
the value of L(t). The instant t = yo/co is crucial, and can be understood as follows; 
at  t = 0, when the jet first intersects the quarter-plane, acoustic waves are produced, 
which travel at different speeds in different directions thanks to the presence of the 
mean flow, but it is shown in Appendix C that the time taken for these waves to first 
reach the side edge is exactly yo/co (the point where the waves first reach the side edge 
has coordinates (Myo, 0,O)). At the instant when the waves reach the side edge, there 
will be a non-zero pressure difference between the upper and lower faces of the 
quarter-plane, which will induce a transverse flow from the pressure surface ( z  = 0 - ) 
to the suction surface ( z  = O + ) ,  acting in such a way as to reduce the pressure 
difference between the two surfaces (and hence the total lift) to zero as t - tm.  We 
further note that L(t)  is independent of the mean flow velocity, U,  and this is a 
consequence of the flow being supersonic, since there can be no further interactions 
between the leading edge and the jet, once the jet has passed the leading edge. 

4. The radiation 
In this section we shall calculate the acoustic pressure measured by a fixed 

observer in the far field, but as will become apparent we shall exclude from 
consideration those observers lying on a single Mach-wave direction. Our starting 
point is the three-dimensional integral expression for the pressure, which can be 
simply derived from (16) in the form 

where 

1x1 is the observer-corner separation and the phase function $(kl, k2) is given by 

1x1 Wl, k2) = kl x+ k,  y - iY 14- 
Spherical polar coordinates, centred on the origin, are defined by 

z = 1x1 cos 0, y = 1x1 sin 0 cos x, z = 1x1 sin 0 sin x. 
As kl+m in the upper half of the k,-plane, we see from the arguments following 

(7) that 

and hence that the integrand of (25) will be exponentially small in the upper half of 
the k,-plane, provided that 

y(k1, k,, w )  - - i P h  

X - P l Z l C  0;  (27) 
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in this case we therefore close the integration contour of the k,-integral in the upper 
half-plane, yielding the result of zero pressure (since the k, branch cuts lie in the 
lower half of the k,-plane, and the integrand possesses no poles in the ,%,-plane). 
Condition (27) is precisely the condition for an observer to lie outside the planar 
Mach surface emanating from the leading edge of the quarter-plane. Inside this Mach 
surface (i.e. for s-/?lzl > 0) ,  we shall be determining the far-field pressure by taking 
the limit 1x1 -+a in (25) and applying the method of stationary phase to the k,- and 
k2-integrals, and in the first instance we shall therefore calculate the stationary phase 
points of the integral, i.e. points k, = I&, k, = I ,  such that 

and we find that there is in fact just one stationary phase point 

It can be shown further that 

I 

When sin 0 > l/M, the stationary phase point lies on the imaginary k,- and k2-axes 
and the corresponding value of y( ,&, , i2 ,w)  is real and positive; in this case it is 
therefore clear that the contribution to the pressure from the stationary phase point 
would be exponentially small in the far field, since p ( x ,  y, z )  depends on the factor 
exp( -7 121). We therefore see that in the region enclosed between the Mach surface 
x = plzl and the cone sin 0 = 1/M the pressure is vanishingly small in the far field, 
and does not correspond to the presence of propagating acoustic waves. In what 
follows we shall therefore consider only the region sin 8 < l/M (i.e. inside the 
circular cone with its apex at the origin and semi-angle sin-' l/M), since it is only in 
this region, and for sin 0 = l/M, that the observer will receive radiation from the 
interaction; we shall briefly return to the question of the behaviour of the pressure 
for sin 8 = 1/M at the end of the next section, and merely note here that for this 
single value of 8 our stationary phase analysis breaks down, since the stationary 
phase point has become infinite. 

The Hessian matrix of second partial derivatives of $(kl, k,) can be found easily; 
when evaluated at  the stationary phase point, the square root of the modulus of its 
determinant takes the value 

(1 -2M2 sin2 6)) co 
1 0  sin X I  sin 0 ' 

and its signature is -2  when w > 0 and + 2  when w < 0. The k, and E,  integrals in 
(25) can now be evaluated in the limit 1x1 4 0 0  (we note that the phase function, $, 
is in the correct form for application of the method of stationary phase, i.e. 4 is a r m l -  
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valued function multiplied by i, in the neighbourhood of the stationary phase point), 
and using formulae given by Jones (1966, p. 344) we find that 

where the factor exp (inol(2 Iwl)) has arisen from the fact that the signature of the 
Hessian depends on the sign of w. We repeat that the integration contour in (30) lies 
along the real axis, indented below the branch points. The value of C(E,, g2, w )  can 
easily be found from (26) and (13), and it now proves convenient to write p ( x ,  y, z )  as 
a sum of two terms in the form 

where A = t - t ,  

and 
yo sin O cos x 

c0(i  -W sin2 01; 
t, = - [M cos o - (1 -1~2 sin2 - 

co p” 
The integral in the first term in (31) is simply 27c4A); for t < 0 the integration 
contour of the second integral in (31) is closed in the lower half of the w-plane, to yield 
the value zero for the integral, whilst for t > 0 we rewrite the integral in the form 

Equation (32) can be evaluated by integration by parts, in exactly the same way as 
is described for the integral dJ,/dt in Appendix B, and by adding our expressions for 
the two terms in (31) together, we find that 

where t, = tl+a 

and 
yo( 1 + cos x) sin 0 
c0(i -1~2 sin2 01; a =  

We can therefore see that the radiation received by an observer in the far field, 
within the cone sin 0 = I /M,  is composed of two distinct signals. The first, negative 
pressure, signal (i.e. the first term in (33)) arrives at the observation point at the 
instant t = t,  (t, > 0) ,  and is exactly equal to the radiation that would have been 
predicted if we had considered the interaction between a delta-function jet and an 
infinite-span airfoil. It is easy to show (Appendix C) that the time interval t, is 
precisely the time taken for acoustic waves to propagate directly from the point 
where the jet first intersects the leading edge of the quarter-plane to the observer. 
The fact that this pressure signal is a delta function, and therefore highly singular, 
is purely a result of our choice of a singular (delta function) upwash on the quarter- 
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FIGURE 3. Schematic diagram of the acoustic pressure generated by the interaction between the 
delta-function jet and the quarter-plane. We have 1x1 = 20, yo = 5, M = 1.5,O = and x = in; the 
pulse at time t = t ,  is a delta function, and that at time t = t ,  is an inverse square root singularity. 
The jet intersects the leading edge of the quarter-plane at  time t = 0. 

plane. Since this first signal is unaffected by the presence of the corner and side edge, 
we conclude that the effects of the corner and side edge on the radiation are all 
included in the second signal (i.e. the second term in (33)), which arrives at the later 
time t = t,. In Appendix C we demonstrate that the time interval t ,  is the least time 
for acoustic waves emitted from the point on the leading edge where the jet first 
intersects the quarter-plane to reach the side edge, be diffracted by the side edge, and 
then reach the observer in the far field. After the initial inverse square root 
singularity (again a result of the singular upwash) at t = t,, this second signal, unlike 
the first, persists for an infinite time (since the side edge is of infinite extent, so that 
acoustic waves continue to be diffracted arbitrarily far from the corner), but decays 
towards zero amplitude as t approaches infinity. The structure of the radiation is 
shown schematically in figure 3. 

The presence of an initial (expansion) pulse, followed by a second (compression) 
pulse in our problem is reminiscent of the radiation predicted by Guo (1990), who 
considered the interruption of a steady jet by an infinite-span, but finite-chord, 
airfoil in supersonic flow, and by Amiet (1986b), who considered the same problem 
for subsonic flow. In  both problems it is diffraction which generates the second 
signal; in the Guo and Amiet problem, diffraction of acoustic waves from the leading 
edge by the trailing edge, and in our present problem diffraction of acoustic waves 
from the leading edge by the side edge. We note, however, that in the quarter-plane 
problem there can be no question of vortex shedding, since the mean flow is parallel 
to the side edge and is therefore unable to convect away any vorticity; the issue of 
a Kutta condition does not, therefore, arise. 

The value of the analysis performed in this section has been to indicate the overall 
structure of the radiation, and the means by which the various components have 
been generated, in a relatively simple way. The singular nature of the pressure field 
(and hence, of the acoustic intensity and energy) is of course unphysical, and, as 
emphasized above, has resulted from our original choice of the delta-function upwash 
distribution. Since both signals in the radiation are singular, it is not possible to 
compare the relative magnitudes of the effects of the leading and side edges on the 
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radiation; in the next section, however, we go on to consider a more realistic, diffuse, 
upwash distribution, which will have the effect of producing a ' smoothed-out ', non- 
singular version of (33), in which the magnitude of the two signals can be compared. 

5. Diffuse jet velocity 
In the previous two sections we have considered the interaction between the 

quarter-plane and a highly compact jet, represented by a delta function, and, not 
surprisingly, the use of such a singular upwash distribution led to the presence of 
singularities (a delta function and an inverse square root singularity) in the radiated 
field. In  this section we therefore consider how the radiation is modified when we take 
account of the fact that real vortex cores are not totally compact, but rather possess 
their own non-zero lengthscale; that is to say, we shall consider a more diffuse 
distribution of the jet velocity normal to the quarter-plane. We start by replacing the 
delta-function upwash in ( 1 )  by the expression 

i.e. the upwash on the quarter-plane is supposed to possess a Gaussian distribution, 
with characteristic lengthscale a, which is precisely the form of the upwash applied 
by Amiet (19863). We note that the volume flux transported by a jet with axial 
velocity distribution (34), obtained by integrating (34) across the plane z = 0, is 
equal to that of the delta-function jet in ( 1 )  (i.e. equal to V ) ,  and further that in the 
limit a+O equation (34) reduces exactly to ( 1 )  (see Jones 1966, p. 51). We shall 
suppose that a < yo, in recognition of the fact that the tip vortices from high-speed 
propellers are likely to be tightly rolled up, so that in effect we are supposing that the 
centre of the jet intersects the leading edge a t  some distance from the corner. 

The analysis proceeds in much the same way as in §§2 and 4. The normal velocity 
boundary condition, (3 ) ,  becomes 

as before, we now use the fact that  the scattered field vanishes in x < 0, and Fourier 
transform (35) over the infinite t-interval and over the positive semi-infinite x- and 
y-intervals, so that the transform of the second term in (35) is 

exp (ik, x+  ik, y- iwt) dy dx dt. (36) 
(x- Ut)Z 

Since we have u + yo, so that exp ( - yi /uz)  < 1, the lower limit in the y-integral can 
be replaced by - 00,  as the integrand of (36) will be exponentially small in y < 0. This 
approximation is equivalent to supposing that when the jet first reaches the quarter- 
plane, it interacts principally with the leading edge, and its initial interaction with 
the side edge is very weak ; or alternatively, that a t  sufficiently late times almost all 
the jet momentum flux across z = 0 is incident on the quarter-plane. Once this 
approximation has been made the analysis proceeds in exactly the same way as in $2, 
and the Wiener-Hopf equation in this case turns out to be identical to ( l l ) ,  except 
that E ( k , ,  A,, w )  defined in (12) is replaced by F(k, ,  k, ,  w ) ,  where 
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the effect of considering the diffuse jet velocity.distribution given by (34) has been 
to introduce the Gaussian factors seen in (37). 

The solution is now completed by making an additive factorization of F(k, ,  k,, o) 
in the form 

E”(k,, k,, w )  = k’+(kl, k2, w )  +J’-(k,, k , ,  01, 
where F*(k,,  k,, w )  are analytic and possess algebraic behaviour at infinity in R* 
respectively. This factorization is again performed using the Cauchy integral 
representation of F* ; we have that 

with the integration contour being the real axis indented above the pole at = k,, 
and in order to facilitate calculation of the integral in (38) we make the approximation 

exp ( -$t2uz) M ( 1  +iE2a2)-l, (39) 

which is valid on the real axis, and hence along the integration contour of (38) (this 
method of approximating the Wiener-Hopf kernel in order to facilitate its 
factorization is due to Koiter (1954), and is described by Noble (1958, p. 160)). Of 
course, we could have applied this approximation to the Gaussian throughout the 
analysis, for instance in the original upwash distribution in (34), and not just in 
determining the additive Wiener-Hopf factors. However, it has proved desirable to 
retain rapid exponential decay at infinity at certain points in the argument (for 
instance, in extending the lower limit of the integral in (36) to - co, and in enhancing 
the convergence properties of an integral which must be calculated numerically - see 
(48)). Moreover, it  seems appropriate to apply approximation (39) only in that part 
of the present analysis in which it has previously been shown to yield good results, 
and that is precisely in the calculation of the Wiener-Hopf factors. 

From (38), F-(kl ,  k,, w )  is therefore given in this approximation by 

P-(k , ,  k,, W )  = - 
V 

exp ( - w 2 a 2 / 4 V )  I,, 
n(k,  u - w )  

where the integral 1, is defined by 

the derivation of a closed-form expression for I ,  is given in Appendix D. Substituting 
the result from (D 3) into (40), we find that E’-(k,, k,,  w )  is given by 

2iV exp ( - w2a2/4U2) 
k ,  Ti‘- w F-(k , ,  k , ,  w )  = 

1 

exp (2y0/a)  { 1 - erf [exp (+in) y: y-( k,,  - 2i/a, w ) ] }  
y-(k,, -2i/a, w )  (ialc,-2) 

+ 
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and an expression for F+(k,,  k,, w )  can be found from F f  = F - F - .  It is easy to see 
that the expression given in (42) possesses the desired analyticity properties in R- ; 
the only possible singularity of (42) in R- is at k, = -2i/a, but we note that the 
second term in the large curly brackets is analytic in R- anyway, and that the first 
and third terms combine so that the residue at k, = - 2i/u is zero ; whilst the fact that 
(42) decays algebraically as k,+w ER- follows in exactly the same way as in 
Appendix A (this is essentially because the exponential decay of the complementary 
error function in the first term of (42) as k, +m ER- is exactly balanced by the 
exponential growth of the factor exp (ik,yo)). It is possible to make some further 
simplification of (42), however, using the fact that we are supposing a to be small; 
in this case 

[y-(k, ,  f2i/a,w)I2 - +%/a as a-tO (43) 

and we can apply the large-argument form of the error function (equation (A 7)) 
to the second and third terms in (42), to yield an approximate expression for 
F-(L,, k,, w )  in the form 

by setting a = 0 we can see that this reduces to the expression for E-(k,,  k,, w )  given 
in (13). Now that F(k, ,k , ,w)  has been decomposed, the determination of the 
radiation proceeds in exactly the same way as it did in $4  for the delta-function jet. 
We find that the acoustic pressure in this case is again given by (25), but with the 
quantity C(k, ,  k,, w )  defined in (26) replaced by 

The radiation in the far field is again determined by the method of stationary phase 
in the limit 1x1 +a, and just as in $4, equation (30), we find that 

with El,,  as previously defined, and the path of integration in the w-plane again 
corresponding to the real axis, indented below any branch points. 

In order to study (46) we will for simplicity take the case of an observer with x = 
in (i.e. an observer positioned directly above the side edge, as is done by Amiet 1986b 
and Guo 1990), in which case E ,  = 0 and the second term in the large curly brackets 
in (44) vanishes, and we find that 
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FIUURE 4. The acoustic pressure generated by the interaction between the Gaussian jet and the 
quarter-plane, for a fixed observer position. The quantity plotted is p Ixl/(p, c,, V) against time, and 
we have a = 0.75, yo = 5, with other parameters as in figure 3. 

By substituting (47) and (45) into (46) we therefore obtain an expression for the 
pressure in the plane x = $x, which we write in the form 

x exp (--) w2a2 dw. 

Comparing (48) and (31), we see that the effect of the inclusion of the Gaussian jet 
velocity distribution on the pressure in the far field for x = $x (equation (48)) has 
been to introduce the additional factor exp ( -da2/4V) into the equivalent 
expression for the delta-function jet radiation (equation (31)); by taking the limit 
a+O, (48) reduces to (31). The fist integral in (48) can easily be evaluated as 

( 2 ~  &/a) exp (-A' iT/a2) ; 

unlike the delta-function jet case of $47 however, it has not proved possible to find 
a closed-form expression for the second integral in (48), but a numerical calculation 
can easily be performed, and the results are presented below. 

In  figure 4 we plot the dimensional quantity p Ixl/(poco V), computed from (48), 
against time for a fixed observer position in the far field. This time history clearly 
consists of two distinct signals, just as in figure 3 for the delta-function jet, but here, 
following our choice of a smooth upwash distribution, the plot is infinitely 
differentiable. The first signal, with its maximum amplitude occurring at time t % 10 
(i.e. at  time t = t, in the notation of the previous section), represents the radiation 
which, having been generated by the interaction between the jet and the leading 
edge, has propagated directly to the observer; this corresponds to the first term in 
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FIGURE 5. Plot of that part of the acoustic pressure resulting from diffraction of sound by the side 
edge (i.e. the second term in (48)), for various values of a (the Gaussian lengthscale), with yo = 3 
and other parameters as in figure 3. 

(48). Alternatively, the second signal, with maximum amplitude at  time t M 14 (i.e. 
at t = t z ) ,  represents radiation generated a t  the leading edge which has subsequently 
been diffracted by the side edge before reaching the observer ; this corresponds to the 
second term in (48). We note in particular that the first signal possesses both a very 
much greater amplitude and a shorter duration than the second. We also note that 
the two signals possess opposite signs (given our original choice of jet velocity 
direction, the initial signal for observers above the quarter-plane is negative), and in 
fact the t-integral of the acoustic pressure over the interval - co < t < 00, for both 
this Gaussian jet and the delta-function jet, is exactly zero. This can be seen from 
(46) (and (30) in the delta-function jet case) by taking the t-integrals of (46) and (30), 
and exchanging the orders of integration so that the t-integrals reduce to 2n4w);  
the value of the integrated pressure now depends on the value of the integrand at 
w = 0, which can be shown to be zero for both (46) and (30). The fact that Spdt 
vanishes can be checked directly in the delta-function jet case by integration of (33) 
with respect to time. This result was also found by Guo (1990) for the interruption 
of a circular jet by a finite-chord, but infinite-span, airfoil. 

In figure 5 ,  only the second (diffracted) signal is plotted for various values of the 
jet lengthscale a ;  we note how, as a is decreased, the amplitude of the signal increases 
and the duration decreases, which is exactly as expected, since the formal limit 
a + 0 applied to the Gaussian jet yields our original delta-function jet, the radiation of 
which was seen to possess an inverse square root singularity at  time t = t,. We 
emphasize, however, that for each value of a considered in figure 5, the first signal 
(not shown) is considerably larger, and indeed that this first signal grows much more 
rapidly than the second as a is reduced. 

As has already been noted, in the limit a + 0 the Gaussian jet reduces exactly to 
the delta-function jet of (1). It is easy to calculate the momentum and kinetic energy 
fluxes of the Gaussian jet across the plane z = 0, which turn out to be 

po P/2na2 and po P/3n2a4 
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respectively; hence, we can see by taking the limit a --f 0 that the momentum and 
energy fluxes of the delta-function jet are infinite. The infinity in the incident energy 
explains the fact that the time-integral of the acoustic energy density (which is 
essentially proportional to the square of the pressure) is divergent in the delta- 
function jet case ; it is easy to see that the integrated energy density is divergent, due 
to the presence in the pressure (equation (33)) of both the delta function at  t = t, (a 
product of two delta functions is non-integrable) and the inverse square root 
singularity at  t = t, (which, when squared, gives a non-integrable ( t - t , ) - l  singularity 
in the energy density). However, for the Gaussian jet (with a + O ) ,  the energy 
transported into the system by the jet is clearly finite, and there are no problems of 
non-convergence in the total radiated energy. 

We can see from (33) and (48) that the acoustic pressure measured by observers 
lying inside the cone sin 0 = l/M decays with distance according to l/lxl, i.e. due 
to spherical spreading. Such a conclusion cannot immediately be drawn for 
sin 8 = 1/M, however, since the expressions for the radiation in (33) and (48) become 
singular, thanks to the presence of the factor 1/( 1 -M2 sin2 @)$. This singularity has 
arisen in our analysis due to the failure of the method of stationary phase (from (28) 
we see that the stationary phase point lies at infinity for this particular value of @), 
but this difficulty could in part be remedied by transforming coordinates into the jet 
rest frame (i.e. the frame in which the quarter-plane is moving through still fluid), 
which is the approach adopted by Ffowcs Williams & Guo (1988) and Guo (1990). If 
this were done, then the stationary phase analysis could be applied for sin 8 = 1/M 
as well, except for an observer lying along the single azimuthal direction x = in, 
again leading to the pressure being inversely proportional to observer distance. It 
can therefore be concluded that, apart from along the unique observer direction 
sin 8 = 1/M,x = &c, the pressure decays with observer distance due to spherical 
spreading; the analysis for this simple extension of our present results will not be 
presented here. Turning now to the single direction sin 0 = 1/M, x = in in our blade 
rest frame (corresponding to the Mach-wave direction in Ffowcs Williams &, Guo’s jet 
rest frame), we note that in the case of an infinite-span airfoil and a circular jet, 
Ffowcs Williams & Guo (1988) have shown that an intense pressure pulse is launched 
along this Mach-wave direction, which, according to linear theory, reaches the far 
field unattenuated (i.e. its amplitude does not decay at  all with distance). In the 
interaction between a jet and a quarter-plane, such a feature must inevitably also be 
present ; indeed, in the case of a circular jet, the Mach-wave pulse from the leading- 
edge interaction must be exactly equal to that predicted by Ffowcs Williams & Quo, 
since no signal from the side edge can catch up with it (always provided that the path 
of the jet does not lie so close to the corner that the jet intersects the leading edge 
and side edge simultaneously). It does not seem possible at  present to extract this 
behaviour along the Mach-wave direction from the complicated integrals in (46), but 
as argued above this intense pulse, launched from the leading edge, seems to be 
independent of the presence of the corner, and for a given jet velocity distribution 
could presumably be investigated using the techniques for an infinite-span airfoil 
described by Ffowcs Williams & Guo (1988). 

6. Concluding remarks 
In this paper we have considered the lift and radiation generated when a rigid 

quarter-plane lying in supersonic mean flow intersects a perpendicular velocity jet 
convected by the mean flow, which is a model problem of relevance to the question 
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of tip-vortex interaction noise produced by modern propellers. The essential 
extension which this analysis represents over previous work lies in our choice of a 
quarter-plane airfoil, in order to better represent the effects of the blade tip. 

The time histories of the lift and radiation have been calculated, and the various 
features explained by consideration of standard retarded-time arguments. Regarding 
the lift, the presence of the side edge was seen to cause the lift to decay towards zero, 
but only once acoustic waves generated at  the leading edge had first reached the side 
edge. Since modern propeller blades will typically have long chords, it does seem 
likely that the sort of variation in the unsteady lift on an individual blade predicted 
in 3 3 would occur in practice, because the rear-row blades would not have completely 
passed through the vortex core before waves from the leading-edge interaction had 
reached the blade tip. It therefore seems that an infinite-span airfoil calculation 
could substantially overestimate the level of unsteady loading generated by the tip 
vortices on the rear blades. Regarding the radiation in our simplified rectilinear- 
motion problem, the far-field acoustic pressure has been seen to be composed of two 
signals ; the first, relatively intense, signal from the leading-edgejet interaction, and 
a second signal of the opposite sign and with a smaller amplitude and longer 
duration, arising from the diffraction of leading-edge sound by the side edge. Whilst 
it is of course this second signal which is a particular feature of our quarter-plane 
problem, it is also clear that it is the first signal which would be the more subjectively 
annoying noise component in practical terms. 

The author is particularly grateful for the financial support provided by Emmanuel 
College, Cambridge. 

Appendix A 

in the form 
In this appendix we consider the additive factorization of the function E(k, ,  k,, w )  

E(k, ,  k,, w )  = E+(k,,  k,, w )  +E-(k  1 2  , k , w )  9 (A 1) 

where E(k, ,  k,, w )  is defined by 

and where E*(k, ,  k,, w )  are analytic and possess algebraic behaviour at  infinity in the 
upper and lower halves of the complex k,-plane respectively. Although the expression 
in (A 2) is analytic throughout the lower half-plane, it possesses exponential growth 
as k ,  +- - ico , so that the factorization is certainly non-trivial. 

Integral expressions for E'(k,, k,, w )  are given by Noble (1958, p. 13), and we have, 
for instance, that 

with the integration contour lying along the real axis, but indented above the pole 
at  6 = k,. We close the contour in the upper half of the [-plane, leaving a branch-line 
integral, and find that 
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where 

and where K has been previously defined following (10). The integral I1 can be 
determined by making the substitution r = t 2  and using results from Abramowitz & 
Stegun (1968) (p. 297, $87.1.3, 7.1.4), and we find that 

where the error function erf (z )  is defined by 

erf (2) = q l e x p  ( -tP) du. 

It is easy to see that 

2iV exp (ik, yo) - - erf [exp (+in) yiy-(kl, k,, w ) ] .  (A 8) 
( k ,  U - w )  y-@,, k,, W )  

The expressions for E* (kl, k,, w )  given in (A 6) and (A 8) have the desired analyticity 
properties and behaviour at infinity; the expression for E-(kl ,  k2,  w )  in (A 6) is clearly 
analytic in R-, whilst the analyticity of (A 8) throughout Rf is guaranteed by the fact 
that the function erf ( z ) / z  is analytic a t  z = 0 (so that E+ is analytic at the zero of y- 
in R+) ; in addition, using the result (Abramowitz & Stegun 1968, p. 298) 

(A 9) 
1 

1 -erf (2) - exp (-2) as z+m, 
7 c X  2 

we see that in (A 6) and (A 8) 

E*(k, ,  k , , w )  - k i l  as k,+m ER*, (A 10) 
so that our expressions for E' have the required algebraic behaviour at  infinity. 

Appendix B 
In  this appendix we derive an expression for the integral 4, defined by 

4 = IOa Im py){ 1 -erf [exp (:in) (Yr]}) dw. 

We have that 

dJ, = Re 1; [ 1. - erf r%Y] exp (iwt) do, 
dt 

and performing this integral by parts we find that 

where u = -in when t - yo/c,, > 0 and = 0 when t -  y,,/c, < 0. 
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J1 can now be recovered by integrating (B 3) with respect to t ;  we note that 
dJ,/dt = 0 for t < yo/co, so that 

4 = C, when t < yo/co, (B 4) 

J1 = 2 tanp1 [(c0t/yo)- l$+C, when t > yo/co, (B 5) 

where C, is a constant. Alternatively, we find that 

where C, is also a constant. The value of C,  can be found by considering the limiting 
value of J1 as t+m; we see that in the limit t+oo the integrand in (B 1) oscillates 
rapidly, and in order to find the asymptotic form of Jl in the limit t+m we can 
therefore approximate the integrand of J1 by its value in the neighbourhood of 
w = 0, so that from (B 1 )  

The second integral in (B 6) tends to zero like t-i as t+m, so that J, - $ 7 ~  as t+a. 
Hence, from (B 5 )  we have that C, = --in, and by the continuity of L(t) a t  t = yo/c,, 
we have further that C, = -in as well. 

Appendix C 
In this appendix we derive expressions for the time taken for acoustic signals to 

propagate between various fixed observer positions in the uniform mean flow. 
Defining spherical polar coordinates centred on the origin as in $4, the time taken for 
a signal emitted from the origin to first reach the point with spherical polar 
coordinates ( T ,  0, x) is 

-{Mcos8-(l--M2sin28)~~; 
CO P- (C 1) 

r 

this is clear from Dowling & Ffowcs Williams’ (1983, p. 191ff) retarded-time 
arguments concerning a source in supersonic motion. We consider only observer 
positions for which sin 8 < 1/M.  If we now use a different set of spherical coordinates 
( T ’ ,  O’, x‘), this time centred on the point (x = x = 0, y = yo), so that 

r‘cos01 =rcosO,  r‘sin@cosX’=rsinOcosX-y,, 

r’ sin 8’ sin x’ = r sin 8 sin x, 
we see from (C 1) that the time taken for an acoustic signal to travel from the point 
on the leading edge (i.e. the line x = z = 0) at  y = yo to the point with spherical polar 
coordinates ( T ,  8, x) relative to the origin is 

T = (i/copz){Mr cos 8-[r2(1--M2 sin2 8)-p2(y;-2ryo sin o cosx)]$. (C 3) 

If we choose 8 = 0 (i.e. a point on the side edge y = z = 0) and x = X, then 

] (C2)  

7 = ( 1 / c ,  /32) {MX - (XZ - pz yip} ; (C 4) 

the expression in (C 4) is just the time taken for an acoustic signal emitted from the 
point where the delta-function jet intersects the leading edge to first reach the point 
x = X on the side edge; treating 7 as a function of X, it is easy to see that the 
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minimum value of T for varying X is yo/co, and that this minimum occurs for 
X =Myo. Therefore, signals emitted from the point at  which the jet intersects the 
leading edge first reach the side edge after an interval of time equal to yo/co. 

In the same way, the time taken for a signal emitted from the point 
(x = X, y = z = 0) to first reach the point with spherical polar coordinates ( r ,  0, x) 
relative to the origin can be shown from (C 1 )  to be 

(i/c,/F){~(r cos 8-x) - ( r2+x2-2rx  cos O-1M2r2 sin2 ti+), (C 5 )  

so that the total time, 7’) for a wave first emitted from (y = yo,” = x = 0) to travel 
to (x = X ,  y = z = 0 ) ,  and then to be diffracted by the side edge and reach the point 
with spherical polar coordinates relative to the origin ( r ,  8, x) in the far field (i.e. 
r 9 1) is obtained by adding (C 4) and (C 5), and is given by 

(C 6) 
Treating T‘ as a function of X, the minimum value of 7’ is found to be 

which occurs for X = yo cot 0. We therefore see that the time taken for the 
disturbance caused by the intersection of the jet with the leading edge to reach the 
side edge and then to first reach a particular point in the far field is given by (C 7). 
Alternatively, the time taken for the disturbance to propagate directly from the 
leading edge to the far field can be found from (C 3),  and is 

r sin 0 cos x - [M cos 8 - (1 -M sin2 
CO P 

- ’0 

cO(l  -M2 sin2 0);’ 

Appendix D 

written here in a slightly different form as 
In this appendix we derive an expression for the integral I , ,  defined in (41), and 

with the integration contour lying along the real axis, indented above the pole at 
5 = k,. The first step is to resolve the term in square brackets in the integrand of 
(D 1) into partial fractions, so that I ,  can be expressed as a sum of three integrals, 
i.e. 

In each of the three integrals in (D 2) the integration contour is now deformed from 
the real axis onto the contour wrapped round the branch line in the upper half of the 
t-plane ; we note that in doing this a pole contribution to the second integral is picked 
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up from the pole a t  6 = 2i/a. The three branch-line integrals can now be completed 
in exactly the same way as was described in Appendix A for I,, and adding these 
three expressions to the pole contribution we find finally that 

1 

exp (-2y,/a) erf [exp (+in) yi y-(k,, 2i/a, w ) ]  
(iak, + 2 )  y - (k , ,  2i/a, w) 

- 2ni 
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